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1. Wave equation in nonlinear, heterogeneous tissue 

1.1 Wave equation in the momentum potential 
 
Ultrasound vibrations are conveniently described by Lagrange coordinates (also called Material 
coordinates) to avoid the nonlinear convective acceleration term found with Euler coordinates. 
The vetor r = xiei defines in the Lagrange coordinates the material point at equilibrium, where 
during a vibration the material point gets the spatial location  
 
!(r,t) = r +" (r,t)  (1.1) 
 
where ψ(r,t) is the displacement as a function of time t for the particle with the equilibrium 
position r.  The Newton acceleration equation then takes the form [11] 
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where p(r,t) is the pressure in the material and we have defined the matrix 
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where δij is the Kronecker delta. The relative volume compression in an ultrasound wave is 
δV/ΔV= !"# (r,t)  ~ 10-3 which allows us to take care of only 1st order terms in the cof 
calculation. This gives the approximation [11] 
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We hence see that as we with Lagrange coordinates avoid the nonlinear convection acceleration 
of the Euler coordinates in (1.2), the force term on the right side is a nonlinear mixture of 
gradients in the pressure and displacement components. However, for plane waves the right 
hand side reduces to !"p . This is also a good approximation for a focused ultrasound beam 
where the radius of curvature of the wave fronts, F,  is large  compared to the wave length λ, i.e. 
λ /F << 1. We shall in the following approximate 
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The constitutive material equation for an isotropic material with nonlinear elasticity can be 
written as  
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where K(p) is a nonlinear elastic compressibility function for isentropic (very rapid) 
compression of the material and κ is the linear bulk compressibility of the material. The 
convolution term represents a dynamic modification when the material compression is not fully 
isentropic and the term hence introduces conversion of acoustic vibration energy to thermal 
vibrations, i.e. absorption of acoustic energy to heat. The elasticity function is conveniently split 
into a linear, dominant component for small pressure amplitudes and a nonlinear component as  
 
K p( ) =! p " Kn p( )  (1.7) 
 
For fluids and soft tissue (which has elasticity close to water) it is adequate to use a 2nd order 
approximation to K(…) as 
 
K p( ) = 1! "n# p( )# p              "n = 1+ B 2A  (1.8) 
 
where βn is a nonlinearity parameter defined by the common 1st and 2nd order elastic parameters 
A and B.  For soft tissues we have κ ~ 400 10-12 Pa-1 and βn ~ 5. For p = 2.5 MPa the linear 
approximation gives !V "V = #$% (r, t) ~ κp ~10-3. The relative nonlinear term is Kn(p)/κp = βnκp 
~ 5 10-3. For gases the elasticity is stronger and it is useful to maintain the full nonlinear 
description K(p). For solids with tight atomic bonds the relative volume compression is so low 
that nonlinear elasticity can generally be neglected for the pressure levels found with medical 
imaging and non-destructive testing.  
For compression waves with zero shear strain one can conveniently introduce the impulse 
potential  
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where u(r,t) is the particle vibration velocity. (1.9b) follows from (1.9a) combined with (1.5) 
and is hence an approximation under the requirement that λ /F << 1. Combining (1.9a) and (1.6) 
gives 
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Spatial heterogeneity is introduced because soft tissues are composed of different material types 
(fat, muscle, parenchyma, connective tissue) which gives a spatial variation of the mass density 
and the elasticity. For the heterogeneous material we separate the material parameters into a 
slowly varying (scale ~ λ) component and a rapidly varying component, i.e. 
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!(r) = !a (r) + ! f (r)                  K(r; p) = Ka (r; p) + K f (r; p)

Ka (r; p) =" a (r)p # Kna (r; p)   K f (r; p) =" f (r)p # Knf (r; p)

 (1.11) 

 
Note that1 ! = 1 !a " # !a ,  # = ! f !a , Inserting this into (1.10) and approximating !"
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The left side represents the propagation of the wave, while the rapid spatial fluctuation of the 
coefficients of the right side terms are scattering sources. The pressure dependency of the wave 
velocity c(r;p) implies that the high pressure in the oscillation propagates with a higher velocity 
than the low pressure. This produces a nonlinear propagation distortion of the wave oscillation 
that accumulates with propagation distance and introduces harmonic frequency components in 
the propagating pulse. Scattering sources including the absorption term have low magnitude and 
are neglected. 
 
Solution of the nonlinear equation (1.12) must be done through numerical simulations, which we 
return to in Section III. However, the amplitude of the scattered wave is so low that one can for 
the scattered wave neglect the nonlinear terms in both the propagation velocity and the 
scattering sources. The left side propagation operator therefore approximates to a linear operator 
for the scattered wave, and one can use the Helmholtz-Kirchoff's theorem that transforms (1.12) 
into an integral equation 
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where !

ni
(r,t)  is the surface integral in the theorem and represents the incident nonlinearly 

propagating wave. This wave can be simulated using the parabolic approximation of (1.10) in 
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(36). g r, r0; t( ) is the Green's function for the linear propagation operator and satisfies the linear 
propagation equation with an impulse point source as 
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The linear scattering integral includes the full wave field !(r,t)and hence also includes multiple 
scattering. The Born approximation where we set !(r,t) " !

ni
(r,t)  in the linear scattering term 

then presents the 1st order scattering. In the nonlinear scattering term we have done the 
approximation !(r,t) " !

ni
(r,t) , because the nonlinear scattering is so weak that multiple 

scattering can be neglected. For numerical simulation of multiple scattering in a heterogeneous 
nonlinear tissue, it is convenient to do time integration of the wave equation as in (1.38). 
 
The nonlinear elasticity in soft tissue can be described by the 2nd order approximation in (1.8).  
The nonlinear propagation velocity and the nonlinear scattering coefficient are then 
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where the parameters are functions of r.  The wave equation, Eq.(1.12) then takes the form 
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Maximal values of the spatial fluctuation of the parameters are σl ~ ± 0.3  and βnf  ~ ± 1.5 [11] 
which allows the approximations as given. We hence see that the nonlinear scattering term is 
proportional to the linear scattering term σl with 4βnaκap as proportionality constant. Typical 
values are σl ~ ± 0.1 and βnf  ~ ± 0.5 and gives σn ~ 2κap. This allows the approximations of 
(1.17a), where we for soft tissue get a nonlinear scattering term that is proportional to the linear 
scattering term σl with 4βnaκap as proportionality constant. For a solid particle in soft tissue, for 
example a micro-calcification one gets σl ~ -1  and βna  ~ 5. This gives a nonlinear scattering 
coefficent between the soft tissue and the solid particle as in (1.17b)  
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!n " 4#na! l$ a p ~ 2$ a p!!!!!!!!!Soft!tissue!internal!!!!!!!!!!!!!!!!!!a)

!n = 2#na$ a p ~ 10$ a p!!!!!!!!!!!Solid!particle!in!tissue!!!!!!!!!!!!b)

!n ! part

!n !int
~ 5 ~ 14dB                                          !!!!!!!!!!!!!!       c)

 (1.17) 

 
Hence, by adequate suppression of the linear scattering from the tissue, the nonlinear micro-
calcification scattering to nonlinear tissue scattering has a contrast ratio ~ 14 dB. For 
!
a
" 400 #10

$12
!Pa

$1  and p = 2.5 MPa we get internally in the soft tissue 
 
Nonl !scat

Lin!scat
=
2 +! l( )! l

! l " #
4$na% a p & 4$na% a p ~ 0.02 ~ "34dB  (1.18) 

 
which suggests that the linearly scattered signal must be suppressed at least – 34dB for adequate 
nonlinear imaging of micro-calcifications in the tissue. 

 
1.2 Wave equation in the pressure 
 
We noet from Eq.(1.9) that p(r,t) = !"(r,t) !t . Differentiating Eq.(1.16) with time, we note 
that  
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which allows us to rearrange for an equation in the pressure only as 
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1.3 Nonlinear interaction between composite band transmitted pulses 
 
This is best studied with the simplified nonlinear elasticity of  Eq.(1.15) as the nonlinear terms 
in Eqs.(1.19,20) are here a direct product form. Assume for example that we transmit a low and 
a high frequency pulse as 
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For further analysis it is convenient to use the complex representation of these signals 
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where !

c
 is the center frequency of the band. !̂ r,"( ), p̂ r,"( )  are termed the analytic 

reoresentation of the real pulses, and 
 
%! r,"( ), %p r,"( )  are the complex envelopes of the pulses. 

The product of two real functions are represented by the analytic signals as  
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Returning to Eq.(1.22) we see that the nonlinear terms 
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The two middle nonlinear source terms produce interaction between the low and high frequency 
pulses, and introduces sum and difference frequencies between the low and high frequency 
components. The 2nd term introduces 2nd order differentaion of 
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the 2nd term for the interaction between the LA and HF.  
 
For the pressure equation, Eq.(1.20) we note that 
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where the 1st term represents the nonlinear self distortion of the LF pulse, the last term 
represents the nonlinear self distortion of the HF pulse, and the middle term represents the 
nonlinear interaction between the two pulses. We note from Eq.(1.24) that the  
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2 . With a ratio 1:10 between the LF and HF, the ratios of the amplitude 
of terms are  1:100:100.  
 

2. Numerical simulation of forward wave propagation 

2.1 Retarded time equation for momentum potential 
 
Neglecting the scattering in Eq.(1.16) we get 
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Inserts retarded time τ 
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Approximates 
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" !z2 # 0  which gives the paraxial approximation of the nonlinear 

propagation equation 
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and from Eq.(XX) we can then write an Equation that takes into account the nonlinear 
propoagation delay and pulse form distortion that is inflicted upon the HF pulse by the LF pulse 
plus the self distortion of the HF pulse (two last terms in Eq.(XX)). 
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where 

 

)
p z,r

!
,"( ) = #

)
$ z,r

!
,"( ) #"  is the HF pulse. The 3rd term on the right side produces 

nonlinear delay and pulse form distortion. The last term is responsible for the nonlinear self 
distortion of the HF pulse. 
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2.2 Retarded time equation for the pressure pulse 
 
Neglecting the scattering terms in Eq.(1.20), the retarded time equation takes the form 
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With the composite LF and HF pulses the nonlinear source term takes the form 
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with the arguments from above the 1st term represents the self distortion of the LF pulse, the 2nd  
represents the interaction between the HF and LF pulses, while the last term represents the self 
distortion of the HF pulse.  
 
Comment: The term for interaction between the HF and LF pulses can be further developed to 
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Through the differentiation the 1st term is 
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L

2 , the 2nd term is 
 
� !

L
!

H
 , and the last term is 
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H

2 . With a ratio 1:10 between the LF and HF, the ratios of the terms are  1:20:100. The 2nd 
term is hemce 1:5 of the last term, which is on the border of neglecting. However, we shall see 
in the next paragraph that there is now computational gain in doing such an approximation.  
 
Equation for HF pulse: Using only the last two terms of this expression, the pressure equation 
for the HF pulse takes the form  
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where the variable 

 

)
p  that represents the HF pulse. The last term produces the nonlinear self-

distortion of the HF pulse, while the 2nd last term produces the modification (nonlinear 
propagation delay and pulse form distortion) of the HF pulse by the LF pulse. 
 
Equation for LF pulse: Using the 1st term of Eq.(XX) we get the following equation for the LF 
pulse with nonlinear self distortion 
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The nonlinear self distortion of the LF pulse produces a triangular distortion of the pulse 
oscillations which through the influence of diffraction produces a peaking of the positive swing 
of the LF pulse and a flattening of the negative LF swing [XX]. This distortion hence modifies 
the LF amplitude that is observed by the HF pulse for positive and negative LF pulses. 
However, the LF pulse propagates only ~ 10 – 20 LF wavelengths for !

L
:!

H
~ 1 :10 . This 
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limits the nonlinear self distortion of the LF pulse, where one can approximate the propagation 
to be linear. 

2.2 Temporal FT of the HF equation 
 
We start with Eq.(XX) and use an interacting low pressure pulse as in Eq.(XX) as 
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Temporal Fourier transform of the LF HF interaction term in Eq.(XX) is then 
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Full temporal Fourier transform of Eq.(XX) then takes the form 
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where the last term represents convolution in the frequency domain 
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Eq.(XX) is further modified to 
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which also can be written in the form 
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The first term on the right side represents diffraction, the 2nd term absorption, the 3rd term the 
nonlinear propagation delay of the center of the HF pulse due to the LF pulse, the 4th term pulse 
form distortion of the HF pulse due to the curvature of the LF pulse which produces a nonlinear 
phase distortion, the 5th term pulse form distortion of the HF pulse due to the gradient of the LF 
pulse around the center of the HF pulse which produces a spectral amplitude distortion, and the 
6th term represents the self distortion of the HF pulse that generates harmonics and sub 
harmonics of the HF frequency. In the receiver one would typically band pass filter the received 
signal around the fundamental frequency. The last term hence represents a nonlinear absorption 
attenuation of the fundamental HF band by pumping energy into the harmonic and sub-harmonic 
components of the HF band. 
 
The frequency offsets of the pressure spectra can be approximated by Taylor series 
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3. Numerical integration of the equation 

3.1 Operator splitting and Burgers equation 
 
The last term in Eqs.(XX,XX) represents self distortion of the HF pulse and introduces 
harmonic components of the HF pulse fundamental band which in its turn produces a nonlinear 
attenuation of the fundamental band of the HF pulse.  
 
In most situations one is mainly interested in the fundamental HF band, and in case the 
nonlinear attenuation can be neglected, the last term in Eqs.(XX,XX) can be neglected, which 
greatly simplifies the solution. The nonlinear self distortion can be included in numerical 
solutions of Eq.(XX) through a method called operator splitting. We first provide a solution for 
the nonlinear HF self distortion  
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and this solution is introduced into the right side as 
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The Burgers Equation is solved through the method of characteristics 
 

 
p z,!( ) = f ! + "n# p z c0( ) = )

p zi$1,r% ,! + "n# p z c0( )  
The 2nd equation can be integrated directly 
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which can be turned into an integral equation as 
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When the integration interval (0,z) is large, the equation can be solved through iteration, as 
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or we can use a set of small integration step using the Euler approximation to the derivative to 
get 
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A more efficient integration can be found through the following procedure 
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which is integrated to 
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where the term with the nonlinear propagation delay is defined through 
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We  note that Eq.(XX) is an integral equation, as the pressure function 

 

)
p s,r

!
,"( )  is found 

under the integrals on the right side. The convolution term also introduces a nonlinear double 
integral term, which complicates the situation. One can use an approximate solution method 
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where for example we set 
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With the Taylor series approximation of the frequency offsets, we approximate 
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In case nonlinear distortion of the HF pulse is negligible, the step with the Burgers Eqn. is 
neglected 
 

3.2 Discretization of transversal derivative 
 
The diffraction of the HF pulse is determined by the transversal derivative 
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For the location of r

mn
= x
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, y

n( )  we approximate the derivative as 
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where !  is the sampling interval in the x-y directions, and k

s
 is the transversal spatial sampling 

frequency. The coefficients al can be determined through the following Fourier analysis. 
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The coefficinets are then determined for best approximation of the Fourier polynimial to 
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This can be done by minimization of the following functional 
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 with respect to al. W k

x( )  is a window weighting function.  
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This can be formulated as the linear set of equations 
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x( ) = 1  we get the standard Fourier coefficients 
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However, this can give some annoying oscillations in the Fourier polynomial close to the ends 
of the interval ± k

s
2( ) , and therefore one can get nicer approximation of the polynomial 

towards the edges. A typical weighting function can be a Hamming/Hanning window  
(http://en.wikipedia.org/wiki/Window_function) 
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2  is even around zero, the coefficients al will be even in l, i.e  a! l = al . Eq.(XX) can hence 
be reduced in dimension. Provided W k

x( )  is even in k
x
 we get 

 

Aql = dkxW kx( )cos q ! l( )2" kx ks{ }
! ks 2

ks 2

# = A!q,! l !!!!!Bq = ! dkxW kx( )kx2 cos q2" kx ks{ }
! ks 2

ks 2

# = B!q

 
The last set of Eqs (-L,…,-1) is hence equal to the set of Eqs, (1,…L), and we can write 
 

Cqlal
l=0

L

! = Bq !!!!!!!!!!!!!q = 0,…,L  

 

Cql = dkxW kx( ) cos q ! l( )2" kx ks( ) + cos q + l( )2" kx ks( ){ }
! ks 2

ks 2

#          for l ≠ 0 

 

Cq0 = dkxW kx( )cos q2! kx ks( )
" ks 2

ks 2

#  

 
The linear part of the operator splitting, Eq.(XX) now takes the form 
 



GPU simul of nl pde 19 of 26 April 30, 2010 
 

 

)
p zi ,r! ,"( ) = )

p zi#1,r! ,"( )exp #i
c0

2"
ds al p s, xm # l$, yn ,"( ) + p s, xm , yn # l$,"( ){ } p s,r

mn
,"( )

l=#L

L

%
zi#1

zi

&
'
(
)

*)

+
,
)

-)

. exp #i
"

2c0
dsH s,r! ,"( )

zi#1

zi

& # i"/0 n (zi ,r! )
'
(
)

*)

+
,
)

-)

. exp ik" ds!1 s,r!( )cos" L0 L s,r!( )
p s,r! ," #" L( ) + p s,r! ," +" L( )

2p s,r! ,"( )
#1

2

3
4

5

6
7

zi#1

zi

&
'
(
)

*)

+
,
)

-)

. exp #k" ds!1 s,r!( )sin" L0 L s,r!( )
p s,r! ," #" L( ) # p s,r! ," +" L( )

2p s,r! ,"( )zi#1

zi

&
'
(
)

*)

+
,
)

-)

 
 

!"
n
(z

i
,r# ) = $

1

c
0

ds!% s,r#( )cos& L
"
L
(s,r# )

zi$1

zi

' !!!!!"
n
(z

i
,r# ) = $

1

c
0

ds!% s,r#( )cos& L
"
L
(s,r# )

0

zi

'  

 

4. Suppression of Class I/II reverberations 

4.1 Model of Class I/II reverberations 
 
According to [XX] we get the sum of the Class I and Class II reverberation noise as 
 

 

dWi !;t1,t2( ) = dt1dt2Uri !;t1,t2( ) Qi !;t1,t2( )Vk !;t1; pk( )e" i! pk# (t1 )

Class ! I

1 244444 344444
+Vk !;ti " t1 + t2; pk( )e" i! pk# (ti " t1 + t2 )

Class ! II

1 2444444 3444444

$
%
&

'&

(
)
&

*&
 

 
where t1 is the time lag to the 1st scatterer for Class I reverberations, t2 is the time lag to the 2nd 
scatterer, and t

3
= t

i
! (t

1
! t

2
)  is the time lag to the 3rd scatterer for Class I reverberations. For 

Class II reverberations, the 1st and 3rd scatterer inter changes. The subscript i denotes the depth 
time interval Ti around ti, Uri

!;t
1
,t
2( ) is the Class II pulse reverberation noise with the 1st 

scatterer at t
3
= t

i
! (t

1
! t

2
) , Q

i
!;t

1
,t
2( )  takes care of the difference between Class I/II 

reverberations due to differences in the transmit/receive beams for zero LF pulse. Vk !;t1; pk( )  
represents the nonlinear distortion for Class I reverberations where the 1st scatterer is at t1, while 
and Vk !;ti " t1 + t2; pk( )  represents the nonlinear distortion for Class I reverberations where the 
1st scatterer is at t

3
= t

i
! (t

1
! t

2
) .  The subscript k represents the transmit pulse number with pk 

as the transmitted LF pulse amplitude. pk! (t1)  is the nonlinear propagation delay for Class I 
reverberations, while pk! (ti " t1 + t2 )  is the nonlinear propagation delay for Class II 
reverberations.  
 
At the 1st scattering, the amplitude of the LF pulse drops so much that the nonlinear propagation 
lag and pulse form distortion can be neglected after the 1st scattering that has the location t1 for 
Class I and t3 = t – t1 + t2 for Class II. As the propagation distance to the 1st scatterer is highest 
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for Class II, the nonlinear propagation lag and pulse form distortion is highest for Class II 
reverberations.  
 
The same situation is also found for the nonlinear self distortion of the HF pulse, where one can 
neglect the nonlinear self distortion after the 1st scattering due to the drop in amplitude at the 
scattering. The nonlinear self distortion is hence highest for the Class II reverberations as the 
propagation distance to the 1st scattering is highest. The nonlinear self distortion is found as an 
added attenuation of the fundamental band of the HF pulse, and hence increases the amplitude 
of Q in the order of ~ 1 – 2 dB from that found with pure linear propagation. 
 
From [XX] we see that we can obtain the linear Q

i
!;t

1
,t
2( )  from beam simulations as 

 

Q !;r
1
,r
3( ) =

dY
3I !;r1,r3( )

dY
3II !;r1,r3( )

=
Hr r3,!;rr( )Ht r1,!;rt( )
Hr r1,!;rr( )Ht r3,!;rt( )

 

 
where H

t
r
1
,!;r

t
( )  is the spatial frequency response at r1 of the transmit beam with focus at rt. 

The added attenuation due to nonlinear self distortion must be obtained from a nonlinear 
simulation of both H

t
r
1
,!;r

t
( )  and H

t
r
3
,!;r

t
( ) , and will depend on the transmitted HF 

amplitude. H
r
r
1
,!;r

r
( )  is the spatial frequency response at r1 of the receive beam with focus at 

rt. 
 
For the nonlinear pulse form distortion we have the following relations 
 

Vk !;t1; pk( ) =
p z

1
,0,!; pk( )

p z
1
,0,!;0( )

=
p+ z

1
,!( )

p
0
z
1
,!( )

Vk !;ti " t1 + t2; pk( ) =
p zi " z1 + z2 ,0,!; pk( )
p zi " z1 + z2 ,0,!;0( )

=
p+ zi " z1 + z2 ,!( )
p
0
zi " z1 + z2 ,!( )

 

 
where z

n
= t

n
c
0
,!n = 1,2,i   and the p(…) are the HF pulses as obtained from simulation of 

Eqs.(XX,XX). The nonlinear propagation delay is also pk! (tn )  is also obtained from simulations 
of Eqs.(XX,XX). Class II reverberations have the longest propagation before the 1st scattering, 
and hence has the largest nonlinear self-distortion of the forward propagating pulse. 
 
The 3rd order reverberation noise with the 1st scatterer at t1 and the 2nd scatterer at t2, can then be 
written as 
 
dW

ki
!;t

1
,t
2( ) = dt1dt2Uri

!;t
1
,t
2( )Aki !;t1,t2( )e" i! # k (ti " t1 + t2 )+# k (t1 )[ ] 2  

 
where  
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Aki !;t1,t2( ) = Aki !;t1,t2( ) e" i#Ak ! ;t1 ,t2( )

= Qi !;t1,t2( )Vk !;t1( )ei! $ k (ti " t1 + t2 )"$ k (t1 )[ ] 2 +Vk !;ti " t1 + t2( )e" i! $ k (ti " t1 + t2 )"$ k (t1 )[ ] 2

= Qi !;t1,t2( )Vk !;t1( ) +Vk !;ti " t1 + t2( )%& '(cos ! $ k (ti " t1 + t2 ) " $ k (t1)[ ] 2( )

!!!!!!+i Qi !;t1,t2( )Vk !;t1( ) "Vk !;ti " t1 + t2( )%& '(sin ! $ (ti " t1 + t2 ) " $ k (t1)[ ] 2( )

 

 
The total noise for a variability of scatterers is then 
 

W
ki
!( ) = dt

2
dt
1
U

ri
!;t

1
,t
2( )Aki !;t1,t2( )e" i! # k (ti " t1 + t2 )+# k (t1 )[ ] 2

t2

(ti + t2m )/2

$
0

t2m

$

!!!!!!!!!!!!!= dt
1

dt
2
U

ri
!;t

1
,t
2( )Aki !;t1,t2( )e" i! # k (ti " t1 + t2 )+# k (t1 )[ ] 2

0

min t1 ,t2m( )

$
0

(ti + t2m )/2

$

 

 
where for t2 > t2m we get Class III reverberations. We extract a delay for correction, and 
modifies this equation to  
 
W

ki
!( ) = e" i!#nki N

ki
!( )

N
ki
!( ) = dt

2
dt
1
U

ri
!;t

1
,t
2( )Aki !;t1,t2( )e" i! # k (ti " t1 + t2 )+# k (t1 )"2#nki[ ] 2

t2

(ti + t2m )/2

$
0

t2m

$
 

 
The total received signal in Ti can be written as 
 
Yki !; pk( ) = e" i!# ki Sli !; pk( ) + Sni !; pk( ){ } + e" i! pk#nki Nki !; pk( )     
 
where Sli is the linearly scattered signal and Sni is the nonlinearly scattered signal that is given 
with the general nonlinear dependency on pk that includes nonlinear scattering from micro 
bubbles. For fluids and tissue we generally can approximate Sni !; pk( ) = pkSni !( ) . 
We note that the delay component can be written as 
 
!
nki
(t
i
;t
1
,t
2
) = !

k
(t
i
" t

1
+ t

2
) + !

k
(t
1
)[ ] 2 + ! Ak (ti;t1,t2 )  

 
where !

Ak
(t
i
;t
1
,t
2
)  is a potential component of !

Ak
";t

1
,t
2( )  that is linear in frequency. If this is 

zero or negligible, the nonlinear propagation delay for the combined Class I/II reverberation is 
the mean-average of the nonlinear propagation delay of Class I and Class II reverberations.  
 
When the transducer array is the major 2nd scatterer/reflector, we only get contribution to the 
integral in Eq.(XX) for  t2 = 0, and the reverberation noise takes the form 
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N
ki
!( ) = dt

1
U

ri
!;t

1
,t
2( )Aki !;t1,t2( )e" i! # k (ti " t1 )+# k (t1 )"2#nki[ ] 2

0

ti /2

$  

 
If further the nonlinear propagation delay increases linearly with depth, i.e. !

k
(t) = a

k
t , we get 

 
!
k
(t
i
" t

1
) + !

k
(t
1
)[ ] 2 = ak ti 2 = ! k ti 2( )  

 

4.2 Suppression of Class I/II reverberations with 2-level pulses 

A. Using only measurements 
 
For each beam direction we transmit two pulse complexes with opposite polarity of the LF 
pulse. The nonlinear scattering is weak or located to points so that it is neglected. We hence get 
the received signals 
 
Y+ i !( ) = ei!" i S+ i !( ) + ei!"ni N+ i !( )

Y# i !( ) = e# i!" i S# i !( ) + e# i!"ni N# i !( )

 

 
There exists a correction filter H

ci
!( )  so that 

 
H

ci
!( )N" i !( ) = N+ i !( )  

 
and a correction delay !

ci
= !

ni
 so that the noise term can be highly suppressed, and we get a 

noise suppressed imaging signal from the time interval Ti as 
 
Z
i
!( ) = e" i!#niY+ i !( ) " ei!#ni H

ci
!( )Y" i !( ) = ei! # i "#ni( )

S+ i !( ) " e" i! # i "#ni( )
H

ci
!( )S" i !( )  

 
If we transmit a 3-pulse sequence with the LF amplitudes p

1
= + p

LF
,!! p

0
= 0,!! p

3
= ! p

LF
 

designed by the (+/0/-) subscript we can also separate out a non-distorted 1st order scattering 
signal as discussed in Section 4.XX. 
 
The challenge is however how to estimate the correction delay and filter.  
 
If the signal-to-noise ratio is adequately low, we can estimate the nonlinear propagation delay 
and pulse form distortion filter from the measured signals as 
 

! (t
1
) =
1

2
delay y+ (t), y" (t){ }!!!!!!!!!!!!V1 #;t1( ) =

e
" i#! (t1 )Y+ #;t1( )

e
i#! (t1 )Y" #;t1( ) + N
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! c (ti ) = " dt
1
%y+ t

1( ) %y+ ti # t1( )Ai $;t1,ti # t1( )
0

ti 2

%
&
'
(

)(

*
+
(

,(

Hci $;ti( ) =
e
# i$! c (ti ) dt

1
%y+ t

1( ) %y+ ti # t1( )Ai $;t1,ti # t1( )
0

ti 2

%

dt
1
%y# t

1( ) %y# ti # t1( ) Qi $;t1( ) +1{ }
0

ti 2

%

Ai $;t1,ti # t1( ) = Qi $;t1( )V1 $;t1( )e# i$ 2! (t1 ) +V1 $;ti # t1( )e# i$ 2! (ti # t1 )

 

 
where 

 
%y+ t( )  is the envelope of the received signal, compensated for absorption. For adequately 

linear variation of the nonlinear propagation delay, we have from Eq.(XX) that 
 
!
c
(t
i
) " 2! t

i
2( )  

 
As there are inaccuracies on the compensation for absorption, it might be better to use this 
approximate correction delay, compared to that from Eq.(XXb). If the there are other strong 2nd 
scatterers than the transducer array, the expressions modifies as 
 

 

! c (ti ) = " dt
1
%y+ t

1( ) dt
2

0

t1

# %y+ t
2( ) %y+ ti $ t1 + t2( )Ai %;t1,ti $ t1 + t2( )

0

ti 2

#
&
'
(

)(

*
+
(

,(

Hci %;ti( ) =
e
$ i%! c (ti ) dt

1
%y+ t

1( ) dt
2

0

t1

# %y+ t
2( ) %y+ ti $ t1 + t2( )Ai %;t1,ti $ t1 + t2( )

0

ti 2

#

dt
1
%y$ t

1( ) dt
2

0

t1

# %y$ t
2( ) %y$ ti $ t1 + t2( ) Qi %;t1( ) +1{ }

0

ti 2

#

Ai %;t1,ti $ t1 + t2( ) = Qi %;t1,t2( )V1 %;t1( )e$ i% 2! (t1 ) +V1 %;ti $ t1 + t2( )e$ i% 2! (ti $ t1 + t2 )

 

B. Supporting simulations of nonlinear propagation delay and pulse form distortion 
 
With low signal-to-noise ratios the estimation of the nonlinear propagation delay and pulse form 
distortion in Eq.(XXa) can have so much error that we get poor results of the procedure under 
4.2A. In this case it can be advantegous to simulate at least one of the nonlinear propagation 
delay and pulse form distortion according to Section 2.XX.   
 
We then assume a material parameter vector  
 
! = !

1
,!

2
,…,!

N( ) = ! t
1( ),! t

2( ),…,! t
N( ){ }  

 
that allows us to simulate  
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V
1
!;t

1
;"( )ei! 2# t1 ;"( ) =

p+ z
1
,!;"( )

p$ z
1
,!;"( )

 

 
and then carry through the calculations as above 
 

 

Ai !;t1,ti " t1 + t2v( ) = Qi !;t1,t2( )V1 !;t1;#( )e" i! 2$ (t1 ;# ) +V1 !;ti " t1 + t2;#( )e" i! 2$ (ti " t1 + t2 ;# )

$ c (ti;# ) = % dt
1
%y+ t

1( ) dt
2

0

t1

& %y+ t
2( ) %y+ ti " t1 + t2( )Ai !;t1,ti " t1 + t2;#( )

0

ti 2

&
'
(
)

*)

+
,
)

-)

Hci !;ti;#( ) =
e
" i!$ c (ti ) dt

1
%y+ t

1( ) dt
2

0

t1

& %y+ t
2( ) %y+ ti " t1 + t2( )Ai !;t1,ti " t1 + t2;#( )

0

ti 2

&

dt
1
%y" t

1( ) dt
2

0

t1

& %y" t
2( ) %y" ti " t1 + t2( ) Qi !;t1( ) +1{ }

0

ti 2

&

 

 
The parameter vector !  must then be adjusted so that the noise is minimized. 
 

4.3 Suppression of Class I/II reverberations with 3-level pulses 

A. XXX 
 
 
 
 
Through simulation of Eqs.(XX,XX) for p

1
= + p

LF
,!! p

0
= 0,!! p

3
= ! p

LF
 and define  (+/0/- 

subscript indicates transmission with + p
LF
,0,! p

LF
 respectively 

 

V+ i !;t1( ) =
p+ z

1
,!( )

p
0
z
1
,!( )

!!!!!!!!!!!!!!!!V" i !;t1( ) =
p" z

1
,!( )

p
0
z
1
,!( )

V+ i !;ti " t1 + t2( ) =
p+ z

i
" z

1
+ z

2
,!( )

p
0
z
i
" z

1
+ z

2
,!( )

!!!!!!!!!!!!!!V" i !;ti " t1 + t2( ) =
p" z

i
" z

1
+ z

2
,!( )

p
0
z
i
" z

1
+ z

2
,!( )

 

 
Q
i
!;t

1
,t
2( )  can be obtained from simulation of Eq.(XX) where nonlinear simulation of the 

transmit beams is required to  
 
 must be estimated from a simulation of combined transmit and receive beams with defined we 
are together with the nonlinear propagation delay able to determine A

ki
!;t

1
,t
2( )  
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A+ i !;t1,t2; pLF( ) = A"+ i !;t1,t2; pLF( ) e" i#A ! ;t1 ,t2 ; pLF( )

= Qi !;t1,t2( )V+ i !;t1; pLF( )ei! pLF $ (ti " t1 + t2 )"$ (t1 )[ ] 2 +Vki !;ti " t1 + t2; pLF( )e" i! pLF $ (ti " t1 + t2 )"$ (t1 )[ ] 2

 

 
 
A! i ";t1,t2;! pLF( ) = A! i ";t1,t2;! pLF( ) e! i#A " ;t1 ,t2 ;! pLF( )

= Qi ";t1,t2( )V! i ";t1;! pLF( )e! i" pLF $ (ti ! t1 + t2 )!$ (t1 )[ ] 2 +V! i ";ti ! t1 + t2;! pLF( )e+ i" pLF $ (ti ! t1 + t2 )!$ (t1 )[ ] 2

 

 
 
A
0i
!;t

1
,t
2
;0( ) = A

0i
!;t

1
,t
2
;0( ) e" i#A ! ;t1 ,t2 ;0( ) = Q

i
!;t

1
,t
2( ) +1  

 
The nonlinear propagation delays are obtained in the same simulation as 
 
! + (ti;t1,t2 ) = p

LF
!
W
(t
i
;t
1
,t
2
) = p

LF
! (t

i
" t

1
+ t

2
) + ! (t

1
)[ ] 2

!" (ti;t1,t2 ) = " pLF!W (ti;t1,t2 ) = " pLF ! (t
i
" t

1
+ t

2
) + ! (t

1
)[ ] 2

 

 
The total noise for a variability of scatterers is then 
 

Wki !; pk( ) = dt
2

dt
1
Uri !;t1,t2( )Aki !;t1,t2; pk( )e" i! pk # (ti " t1 + t2 )+# (t1 )[ ] 2

t2

(ti + t2m )/2

$
0

t2m

$

!!!!!!!!!!!!!!!!!= dt
1

dt
2
Uri !;t1,t2( )Aki !;t1,t2; pk( )e" i! pk # (ti " t1 + t2 )+# (t1 )[ ] 2

0

min t1 ,t2m( )

$
0

(ti + t2m )/2

$

 

 
where for t2 > t2m we get Class III reverberations. We extract a delay for correction, and 
modifies this equation to  
 
Wki !; pk( ) = e" i! pk#nki Nki !; pk( )

Nki !; pk( ) = dt
2

dt
1
Uri !;t1,t2( )Aki !;t1,t2; pk( )e" i! pk # (ti " t1 + t2 )+# (t1 )"2#nki[ ] 2

t2

(ti + t2m )/2

$
0

t2m

$

 

 
and the total received signal in Ti can be written as 
 
Yki !; pk( ) = e" i! pk# i Sli !; pk( ) + Sni !; pk( ){ } + e" i! pk#nki Nki !; pk( )      
 
where Sli is the linearly scattered signal and Sni is the nonlinearly scattered signal that is given 
with the general nonlinear dependency on pk that includes nonlinear scattering from micro 
bubbles. From fluids and tissue we generally can approximate Sni !; pk( ) = pkSni !( ) . 
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5. Combined suppression of Class I/II reverberations 

5.1 Transducer array main reflector 
 
When the transducer array is the main reflector we mainly get contribution for t2 = 0. In this 
case we get 
 

Nki !; pk( ) = dt
1
Uri !;t1( )Aki !;t1; pk( )e" i! pk # (ti " t1 )+# (t1 )"2#nki[ ] 2

0

ti /2

$  

  
 


